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1. Section 1: System Modelling
1.1 Question 1: Equations of Motions

From the free body diagram (Figure 1), the equations of motion can be deter-
mined (Equation 1,2,3)

Figure 1: Free Body Diagram

m1ẍ1 + (c1 + c2)ẋ1 − c2ẋ2 + k1x1 = −f (1)

m2ẍ2 + (c2 + c3)ẋ2 − c2ẋ1 − c3ẋ3 + k3(x2 − x3) = f (2)

m3ẍ3 + c3(ẋ3 − ẋ2) + k3(x3 − x2) = 0 (3)

1.2 Question 2: Base Mass Analysis

The base mass is required to simulate the rest of the wire-bonding machine
apart from the component to be controlled. Since the rest of the machine is
not fixed, there is a small but not negligible dynamical contribution from the
base mass.

1.3 Question 3 & 4: Transfer Functions and Bode Plot

The equations of motion were rearranged using MATLAB, and then a Laplace
transform was performed, assuming all initial conditions (x1 = x2 = x3 = dx1 =
dx2 = dx3) = 0 (Appendix 1).

Table 1: Mass, damping and stiffness variables
Type Base Mass (1) Middle Mass (2) Top Mass (3)
Mass (m)[kg] 500 2 3
Damping (c)[Ns/m] 6e4 2e2 1e3
Stiffness (k)[N/m] 1e8 0 5e7
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The measured values for mass, damping and stiffness were substituted into
the transfer function (Equation 4, 5, 6))

x̂1(s)
F̂x(s)

= −(6s3 + (5e3)s2 + (250e6)s)
(3e3)s5 + (3.16e6)s4 + (126e9)s3 + (20.6e12)s2 + (25.6e15)s + (1e18)

(4)

x̂2(s)
F̂x(s)

= (3s2 + (1e3)s + 50e6) ∗ (500s2 + (60e3)s + 100e6)
(3e3)s6 + (3.16e6)s5 + (126e9)s4 + (20.6e12)s3 + (25.6e15)s2 + (1e18)s

(5)

x̂3(s)
F̂x(s)

= ((1e3)s + 50e6) ∗ (500s2 + (60e3)s + 100e6)
(3e3)s6 + (3.16e6)s5 + (126e9)s4 + (20.6e12)s3 + (25.6e15)s2 + (1e18)s

(6)
Substituting s = −jω, the magnitude | x̂n(s)

F̂x(s)| and phase ̸ x̂n(s)
F̂x(s) of each degree

of freedom in a Bode Plot (Figure 8,3,4).

Figure 2: Bode Plot for x̂1(s)
F̂x(s)
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Figure 3: Bode Plot for x̂2(s)
F̂x(s)

Figure 4: Bode Plot for x̂3(s)
F̂x(s)
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Both the x2 and x3 transfer functions have a phase of -90 degrees at low
frequency and resonant peak around 1000Hz. However, x2 also has an anti-
resonance and has a phase of -180 degrees at high frequency, compared to the
-270 degrees of the x3 transfer function. Mathermatically, x2 and x3 are identical
except for a 3s2 term in the x2 numerator.

1.4 Question 5: Modal Analysis

Equations 1,2,3 can be written in matrix form (Equation 7)


−fx

fx

0

 =


m1 0 0
0 m2 0
0 0 m3



ẍ1
ẍ2
ẍ3

+


c1 + c2 −c2 −c3

−c2 c2 + c3 −c3
0 −c3 c3



ẋ1
ẋ2
ẋ3

+


k1 0 −k3
0 k3 −k3
0 −k3 k3



x1
x2
x3


(7)

The eigenvalues and eigenvectors were then solved for the undamped system
(Equation 8).

(inv(M)K − λI)ν⃗ = 0 (8)
Where M and K are the mass and stiffness matrices respectively, I is the

identity matrix. λ are the eigenvalues and ν⃗ are the eigenvectors. (Table 2)

Table 2: Natural Frequencies
Eigenvalues 0 200000 41666666
Frequency (rad/s) 0 447.2 6454
Frequency (Hz) 0 71.2 1027.3
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The aforementioned transfer functions can be simplified by neglecting damp-
ing. For x1 at low frequencies, the transfer function is ≈ 1

k1
, giving a zero slope

and −180◦ phase in Figure 5. The single resonant peak occurs at 71.2 Hz and
70.3Hz for the undamped and damped system respectively. This is then fol-
lowed by a slope of -2 and a decrease in phase to −360◦, as the transfer function
is ≈ 1

m1s2 . It is notable at low frequencies, the damped transfer function has a
−90◦ phase difference and a lower amplitude, so this simplification is only valid
for frequencies above 10 Hz.

x̂1(s)
F̂x(s)

= 1
m1s2 + k1

(9)

Figure 5: Bode plot comparison of undamped and damped system for x1
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For x2 at low frequencies, the transfer function has a slope of -2 and phase
of −180◦, as the transfer function is ≈ 1

(m2+m3)s2 . An anti-resonance occurs at
644.1Hz Figure 6 causing the phase to increase to 0◦. This is followed by a
resonance peak at 1022Hz and a continuation of the -2 slope since the transfer
function is ≈ 1

m2s2 . This also coincides with the phase returning to −180◦.
Again, the damping has a significant affect below 10Hz.

x̂2(s)
F̂x(s)

= (m3s
2 + k3)

(m2 + m3)k3s2 + m2m3s4 (10)

Figure 6: Bode plot comparison of undamped and damped system for x2
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At low frequencies, x3 has a slope of -2 since the transfer function is ≈
1

(m2+m3)s2 . A single resonance peak occurs at 1022Hz. At high frequencies,
the transfer function is ≈ k3

(m2m3)s4 , giving a slope of -4 and a phase of −360◦.
Likewise, below 10Hz the damping starts to dominate.

x̂3(s)
F̂x(s)

= k3

(m2 + m3)k3s2 + m2m3s4 (11)

Figure 7: Bode plot comparison of undamped and damped system for x3
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2. Section 2: System Identification
2.1 Question 6: Identifying Plant

The input into the unknown plant was a logarithmic chirp. It was chosen to
excite a wide range of frequencies but also to be simple to compute. It was also
repeated two more times to to capture the response from high to low frequency,
not just low to high frequency. A hanning window was used to process the
signal.

Figure 8: Input and Output in unknown transfer function

Using MATLAB’s signal processing toolbox, the unknown transfer function
was estimated. The coherence of the estimation was calculated to be 1 for
all frequencies (Figure 9), however this is totally unrealistic as beyond 4000Hz
there is a considerable amount of noise.

Figure 9: Bode Plot of unknown transfer function
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2.2 Question 7: Comparing Transfer Functions

The unknown transfer function is very similar to the x2 (Equation 10) transfer
function (Figure 10). However, it is slightly shifted to higher frequencies, with
an anti-resonance around 800Hz and a resonance at 1300 Hz.

Figure 10: Experimental (unknown TF) vs Theoretical (from 1st principles)

2.3 Question 8: Transfer Function with Delay

The theoretical transfer function is subjected to a delay of t = 0.125ms (Equa-
tion 13).

Gt = e−ts (12)
This was combined in series with the theoretical transfer function (Equation

5) for the plant.

Gd = GtGp = e−ts x̂2

Fx
(13)

This has no effect on the amplitude of the system (Figure 11), however
it reduces the phase below −180◦ instead of forming an asymptote. Noise
dominates at frequencies over 400Hz.
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Figure 11: Bode plot of Delayed vs Theoretical Transfer Function

3. Section 3: Controller Design
3.1 Question 9: PID Controller Design

The controller was designed to be robust to prevent instabilities occurring. This
involved ensuring a phase margin of >= 30◦, a gain margin >= 6 dB and a
modulus margin <= 6 dB.
The PID controller has a transfer function:

Gc = kp + ki

s
+ Nkd

1 + N
s

(14)

Where k is the gain, for the proportional (p), integrator (i) and differentiator
(d). The derivative at high frequencies is tamed by a low pass filter, defined
by the filter coefficient N, to reject noise. No other filters were required as the
resonant peak of the controller is higher than the bandwidth (Figure 14)

Initially, a controller was designed using the rule of thumb (Equation 15,
16). This was then optimised so the controller would meet the required safety
margins (Figure 12,13).

Gc = kp(1 + ωi

s
)
( s

ωd
+ 1)

( s
ωt

+ 1) ; (15)
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ωi = ωa

10 , ωd = ωa

a
, ωt = aωa, kp = 1

a

1
|Gd(jω)| (16)

Figure 12: Optimised (L) vs Rule of Thumb (R) Nyquist
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Figure 13: Optimised vs Rule of Thumb Bode

3.2 Question 10: Stability of Controller

The phase margin (PM) was defined to be the angle between the horizontal and
the unit circle intersection on the nyquist plot (Figure 14). The gain margin
(GM) was defined to be the reciprocal of the real part of the intersection with the
horizontal. The modulus margin (MM)was defined to be the maximum value
of the sensitivity function. The bandwidth was defined to be the frequency at
which the combined controller and delayed plant amplitude = 0 dB. Note: the
dotted black lines represent the limits of the margins specified earlier.

The corresponding values are shown in (Table 3).
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Figure 14: Phase, Gain and Modulus Margin

Table 3: Controller Frequency Domain Parameters
Proportional Gain [kp] 1e+05
Integrator Gain [ki ] 1.5e+06
Differentiator Gain (Hz) [kd ] 2.4e+03
Filter Coefficient [N ] 5e+03
Phase Margin (◦) 50.4
Gain Margin(dB) 6.17
Modulus Margin (dB) 5.91
Bandwidth (Hz) 74.9
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The open loop transfer function is the combination of the delayed and con-
troller transfer function in series (Equation 17).

GL = GdGc (17)
This is shown in (Figure 15).

Figure 15: Bode Plot of the Loop

The sensitivity (S) and complimentary sensitivity (T) (Equation 18 is shown
in Figure 16. The stability is shown in Figure 14.

S = 1
1 + GL

, T = GL

1 + GL
(18)

Figure 16: Bode Plot of the Sensitivity
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3.3 Question 11: Following Reference Signal

The controller was discretised for a sample time ts = 0.125ms (Equation 19).

Gc,d = kp + kits

z − 1 + Nkd

1 + Nts

z−1
(19)

It was then implemented in a feedback loop (Figure 17) in Simulink.

Figure 17: Simulink Diagram Feedback

When following the reference signal it had a maximum overshoot of 1.13%
at 0.15 seconds and a maximum undershoot of 0.01% at 0.3 seconds (Figure
18).

Figure 18: Simulink Diagram Feedback
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3.4 Question 12: Step Response

For a step response (Figure 19) for a time sampling of 0.125ms, the overshoot
is 2.87% occurring 3.25ms after the perturbation. The settling time, defined as
the time to reach 98% of the final value is 8.25 ms.

Figure 19: Step Response of hidden system
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3.5 Question 13: Discrete Sensitivity

Comparing the two graphs in Figure 20, the discrete sensitivity stops at fre-
quencies above around 3000Hz. Before the resonant peak, the amplitudes are
identical, however afterwards the amplitude of the sensitivity of the continuous
system increases whereas in the discrete system it plateaus. The opposite oc-
curs in the phase as the discrete system increases to 180◦ at 3000Hz whereas
the continuous system tends towards 90◦.

Figure 20: Continuous (L) vs Discrete Sensitivity
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3.6 Question 14: Feedforward Controller

With no control, the plant does not follow the reference signal. This is quite
predictable as the reference signal is a displacement whereas the input to the
plant is a force.

Figure 21: Reponse with no control

Implementing a feedforward controller boosts the reference signal so the re-
sponse mirrors the reference more closely. This reduces the error the PID
controller has to deal with, making it more accurate.

It was designed to generate a force equivalent to accelerating the mass and
acting against the damper. The mass force requires the displacement input to
be differentiated twice and has a gain of 5 (Equation 20), equivalent to the sum
of the middle and top mass (Table 1). The damping force is only differentiated
once. The gain, ceq was initially calculated as 167 as the middle and top damper
in series (Equation 21), but was revised to 185 as it had a better response with
the PID controller (Figure 30).

F = ((m2 + m3)s2 + ceqs)x̂s (20)

ceq = 1
1
c2

+ 1
c3

(21)
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Figure 22: Feedforward Diagram

The contributions from the mass and damping sections of the feedforward
controller can be seen in (Figure 23)

Figure 23: Feedforward Controller

This was then combined with the PID feedback controller (Figure 24). The
response to the reference signal can be seen in (Figure 25)

The combined controller is clearly superior (Table 4) with the lowest over-
shoot (0.42%) for the step up and the lowest undershoot for the step-down (0.32
%). Since the combined controller did not exceed 2% deviation from the refer-
ence, the settling time was defined as the time to reach ±0.2% of the reference
signal after the step down. The rise time was defined as the lag time between
the reference and response reaching the 4mm displacement.

Table 4: Controller Time Domain Parameters
Feedforward Feedback Combined

Overshoot (%) N/A 2.2 0.42
Undershoot (%) 5.7 1.9 0.32
Settling Time (ms) 84.85 164.7 28.3
Rise Time (ms) N/A 2.835 5.61
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Figure 24: Feedback(red) and Feedforward (green and blue) Controller Diagram

Figure 25: Feedback and Feedforward Controller: Overall (L) and Close-up (R)

This can be seen in (Figure 26).
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Figure 26: Comparing Controllers: Step-up (L), Step-down (R)

3.7 Question 15: Disturbance Rejection

The error (ed) caused by a disturbance (d) can be described by (Equation 22)

ed = P (s)d = G

1 + CG
d (22)

Where P is the process sensitivity. The combined controller performs better
than the feedback controller at frequencies above 100Hz

Figure 27: Process Sensitivity

The maximum force required should also be considered when choosing the
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actuator to control the system. For the system with no disturbances or noise,
(Figure 28) the maximum force required is 1120N.

Figure 28: Actuator Force (no noise or disturbances)

Noise from the encoder up to the order of ±10µm is allowable to ensure noise
does not dominate (Figure 29)
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Figure 29: Actuator Force with noise ±10µm

3.8 Question 16: Highest Theoretical Bandwidth

The highest bandwidth without delay was calculated to be the same as with
delay, at 74.9 Hz. However, this is unrealistic as without delay, the bandwidth
should be significantly higher.
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Appendix
1: Algebraic Transfer functions

x1(s) = ((−m2 ∗ m3 ∗ laplace(f(t), t, s)) ∗ s3 + (−c3 ∗ m2 ∗ laplace(f(t), t, s) −
c3 ∗ m3 ∗ laplace(f(t), t, s)) ∗ s2 + (−k2 ∗ m2 ∗ laplace(f(t), t, s) − k2 ∗ m3 ∗
laplace(f(t), t, s)) ∗ s)/(m1 ∗ m2 ∗ m3 ∗ s5 + (c1 ∗ m2 ∗ m3 + c2 ∗ m1 ∗ m3 + c3 ∗
m1 ∗ m2 + c2 ∗ m2 ∗ m3 + c3 ∗ m1 ∗ m3) ∗ s4 + (c1 ∗ c2 ∗ m3 + c1 ∗ c3 ∗ m2 + c2 ∗
c3 ∗ m1 + c1 ∗ c3 ∗ m3 + c2 ∗ c3 ∗ m2 + c2 ∗ c3 ∗ m3 + k2 ∗ m1 ∗ m2 + k1 ∗ m2 ∗
m3 + k2 ∗ m1 ∗ m3) ∗ s3 + (c1 ∗ c2 ∗ c3 + c1 ∗ k2 ∗ m2 + c2 ∗ k2 ∗ m1 + c1 ∗ k2 ∗
m3 + c2 ∗ k1 ∗ m3 + c2 ∗ k2 ∗ m2 + c3 ∗ k1 ∗ m2 + c2 ∗ k2 ∗ m3 + c3 ∗ k1 ∗ m3) ∗
s2 + (c1 ∗ c2 ∗ k2 + c2 ∗ c3 ∗ k1 + k1 ∗ k2 ∗ m2 + k1 ∗ k2 ∗ m3) ∗ s + c2 ∗ k1 ∗ k2)

x2(s) = (m1 ∗ m3 ∗ laplace(f(t), t, s) ∗ s4 + (c1 ∗ m3 ∗ laplace(f(t), t, s) +
c3 ∗ m1 ∗ laplace(f(t), t, s)) ∗ s3 + (c1 ∗ c3 ∗ laplace(f(t), t, s) + k2 ∗ m1 ∗
laplace(f(t), t, s)+k1∗m3∗ laplace(f(t), t, s))∗s2 +(c1∗k2∗ laplace(f(t), t, s)+
c3 ∗ k1 ∗ laplace(f(t), t, s)) ∗ s + k1 ∗ k2 ∗ laplace(f(t), t, s))/(m1 ∗ m2 ∗ m3 ∗ s6 +
(c1∗m2∗m3+c2∗m1∗m3+c3∗m1∗m2+c2∗m2∗m3+c3∗m1∗m3)∗s5 +(c1∗
c2∗m3+c1∗c3∗m2+c2∗c3∗m1+c1∗c3∗m3+c2∗c3∗m2+c2∗c3∗m3+k2∗
m1∗m2+k1∗m2∗m3+k2∗m1∗m3)∗s4 +(c1∗c2∗c3+c1∗k2∗m2+c2∗k2∗
m1+c1∗k2∗m3+c2∗k1∗m3+c2∗k2∗m2+c3∗k1∗m2+c2∗k2∗m3+c3∗k1∗
m3)∗s3+(c1∗c2∗k2+c2∗c3∗k1+k1∗k2∗m2+k1∗k2∗m3)∗s2+c2∗k1∗k2∗s)

x3(s) = (c3∗m1∗ laplace(f(t), t, s)∗s3 +(c1∗c3∗ laplace(f(t), t, s)+k2∗m1∗
laplace(f(t), t, s))∗s2 +(c1∗k2∗ laplace(f(t), t, s)+c3∗k1∗ laplace(f(t), t, s))∗
s + k1 ∗ k2 ∗ laplace(f(t), t, s))/(m1 ∗ m2 ∗ m3 ∗ s6 + (c1 ∗ m2 ∗ m3 + c2 ∗ m1 ∗
m3 + c3 ∗ m1 ∗ m2 + c2 ∗ m2 ∗ m3 + c3 ∗ m1 ∗ m3) ∗ s5 + (c1 ∗ c2 ∗ m3 + c1 ∗ c3 ∗
m2 + c2 ∗ c3 ∗ m1 + c1 ∗ c3 ∗ m3 + c2 ∗ c3 ∗ m2 + c2 ∗ c3 ∗ m3 + k2 ∗ m1 ∗ m2 + k1 ∗
m2 ∗ m3 + k2 ∗ m1 ∗ m3) ∗ s4 + (c1 ∗ c2 ∗ c3 + c1 ∗ k2 ∗ m2 + c2 ∗ k2 ∗ m1 + c1 ∗
k2∗m3+ c2∗k1∗m3+ c2∗k2∗m2+ c3∗k1∗m2+ c2∗k2∗m3+ c3∗k1∗m3)∗
s3 + (c1 ∗ c2 ∗ k2 + c2 ∗ c3 ∗ k1 + k1 ∗ k2 ∗ m2 + k1 ∗ k2 ∗ m3) ∗ s2 + c2 ∗ k1 ∗ k2 ∗ s)
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2: Feedforward and Feedback Controller

Figure 30: Feedforward Diagram Damping
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