
Assignment 3: Model Predictive
Control (MPC) for path following

RO47017 Vehicle Dynamics and Control

by

Ben Halliwell

02/06/2023

Mechanical Engineering

Department of Mechanical, Materials and Maritime Engineering

1

Contents

1 Introduction 1

2 Default MPC Path Follower 2

3 Designed MPC Path Follower 5

4 Controller Comparison 7

5 Reflection 9

6 Conclusion 9

7 Appendix 10

References 13

1. Introduction
1.1 Bicycle Model

The bicycle model is a simplified representation of a car (Figure 1), as it only
considers differences between the front and rear of the car, with no difference
between the inner and outer side of the car, just like a bicycle.

Figure 1: Bicycle Model Diagram

The bicycle model assumes a constant magnitude of velocity, as only the lateral
forces on the tyres are considered. These tyres are also assumed to behave
linearly, as they have a constant cornering stiffness (Cα). The model is 2D, so
neglects any effects that require motion in the z-direction, such as pitch, roll or
suspension dynamics.

1.2 MPC Controller

Model Predictive Control (MPC) is method used to optimise the performance
of a system over a specific time horizon. The main principle is that instead of
applying fixed control actions, the control inputs are dynamically adjusted at
each time step based on the current state of the system and the predicted future
behaviour. This requires minimising a cost function which penalises deviation

1

from the reference signal and large variations in the control output (Equation
1).

J =
H1∑
i=1

W1,i(Yref,i − Yi)2 +
H2∑
i=1

W1,i(∆δ)2 (1)

Prediction is particularly beneficial in path following as it allows the controller
to predict where the vehicle should go, allowing it to cut the corner of the
path (Figure 2). Prediction also allows an MPC controller to adapt to system
disturbances making it suitable for handling uncertain and dynamic systems
such as automated driving. It is also easy to add multiple constraints for the
individual states of the car, which allow it to output a reasonable control signal.
MPC is also useful for multivariable control, as it can optimally control multiple
inputs and outputs simultaneously.

Figure 2: MPC vs (underdamped) PID Diagram

However, MPC is computationally expensive as it requires optimisation to occur
at every time-step in real time. For more states and a longer time horizon, the
computational power required increases significantly. In the assignment, a time
horizon of 40 steps was used and a compiled computing language (C++) was
required to run the simulation in a reasonable time. MPC also requires an
realistic plant model to make accurate projections, which may be difficult to
calculate for a vehicle with 100s of degrees of freedom.

2. Default MPC Path Follower
The default MPC used the kinematic bicycle model (Equation 2) as the theo-
retical plant for the controller.

2

v̇x = 0

ψ̇ = vx

lr
sin(β)

Ẋ = vxcos(ψ + β)
Ẏ = vxsin(ψ + β)

where β = arctan
(
lr
L

tan(δ)
)

-10 < β < 10[deg], -360 < δ < 360 [deg]

(2)

The reference signal was a sine input for the lateral position (Y), so the Y-
weighting was optimised with a control input weighting of 1 (Figure 3). All
other weightings were set to zero. The optimisation was based off minimising
the lateral position error (Equation 3) and the chatter (Equation 4). Note: the
error was calculated from 5 to 30 seconds.

e =
n∑

i=1

|Yref,i − Yi|
n

(3)

c =
n∑

i=1

1
n

∣∣∣∣∣∣d(δi)
dt

∣∣∣∣∣∣ (4)

The optimum weighting was found to be 4.5e-2 (Figure 4), although the MPC
performed similarly at weights between 1e-2 to 1e-1. At low weights (below 3e-
3), the system experienced oscillations at a lower frequency than the reference
signal, which caused the steering angle input to experience unstable growth
(Appendix 1). The system became unstable even before the sine wave reference
began. At high weights (above 3e-1), the system experienced oscillations at
a higher frequency than the reference signal. The system remained stable for
longer than the low weighting but still became unstable after 2 oscillations.

Also the absolute value of the weightings did not matter, only the ratio between
them (Appendix 2).

3

Figure 3: Error Optimisation of Kinematic Bicycle Model MPC

Figure 4: Default MPC Reference Signal (L) & Steering Angle (R) for Y-weight = 4.5e-2

4

3. Designed MPC Path Follower
The kinematic bicycle model was replaced with the dynamic kinematic model
(Equation 5).

V̇x = vyr

V̇y = −
(
Cα,f + Cα,r

mvx

)
vy +

(
lrCα,r − lfCα,r

mvx
− vx

)
r + Cα,f

m
δ

ṙ =
(
lrCα,r − lfCα,r

Izvx

)
vy +

l2rCα,r + l2fCα,r

Izvx

 r + lfCα,f

Iz
δ

ψ̇ = r

Ẋ = Vxcos(ψ) − Vysin(ψ)
Ẏ = Vxsin(ψ) + Vycos(ψ)
δ̇ = dδ

-10 < β < 10[deg], -360 < δ < 360[deg], -800 < δ̇ < 800 [deg/s]

(5)

The same optimisation was used for the dynamic bicycle model, giving an opti-
mum Y-weighing of 3. The error increase at low weightings is much lower than
for the kinematic bicycle model. Above a Y-weighting of around 4, the error
increases significantly. Unlike the kinematic bicycle model MPC, the dynamic
model does not become unstable at suboptimal weights. At low weights, the
lateral postion error increases whereas at high weights, the chattering perfor-
mance is insufficient (Appendix 3).

5

Figure 5: Error Optimisation of Dynamic Bicycle Model MPC

Figure 6: Designed MPC Reference Signal (L) & Steering Angle (R) for Y-weight = 3

6

4. Controller Comparison
RMS error was used to compare the two controllers for lateral position (Equa-
tion 6) and steering angle (Equation 7). Since the steering angle did not have a
reference, the RMS was calculated against zero steering angle. Note: the error
was calculated from 5 to 30 seconds.

eY,RMS =
√√√√∑N

i=1(Yi,ref − Yi)2

N
(6)

eδ,RMS =
√√√√∑N

i=1(0 − δi)2

N
(7)

Table 2: RMS Error
Controller Y Error (m) δ Error (deg)
Kinematic 0.1441 0.7414
Dynamic 0.1260 0.5468

As shown in table 2, the dynamic bicycle model MPC was superior in lateral
position tracking and steering input. This makes sense because the dynamic
bicycle model is more similar to the actual plant dynamics than the kinematic
bicycle model. However the dynamic bicycle model requires a detailed under-
standing of the car’s properties, such as the cornering stiffness (Cα) and moment
of inertia about the z axis (Iz). The kinematic bicycle model only requires the
centre of gravity and the length of the vehicle as inputs.

It is also clear that the dynamic model has a higher bandwidth as it can closely
follow the reference signal up to a frequency of 0.35 Hz, whereas the kinematic
model is only stable until 0.25 Hz. Note: all other graphs show a reference
signal frequency of 0.2 Hz.

7

Figure 7: RMS error for kinematic and dynamic bicycle model

8

5. Reflection
Overall the most challenging part of this assignment was actually getting the
MPC controller to control the lateral position for the designed controller. This
was because the steering angle output remained at zero even though I changed
the weights, order of states and constraints. It was particularly time consuming
as writing and compiling the ACADO C++ files took around 45 seconds each
time I wanted to make a small adjustment to the initialisation file. In the end
I had to start from the template file again. Also, downloading and linking the
compiler to MATLAB took a significant amount of time.

On the other hand the optimisation of the weight was very quick, as only the
Y-position weight was adjusted with the MPC controller bearing most of the
optimisation workload. This is in stark contrast to the previous two assign-
ments where optimisation was the most time-consuming task.

Overall, the main learning outcomes were the ability to use an MPC controller
to follow a given path. Unlike the previous assignments, the focus was on
extending pre-existing controller dynamics to a more advanced model, instead
of simply tuning the controller. This produces its own challenges as it required
me to read and understand someone else’s MATLAB and Simulink code, which
is notoriously difficult.

6. Conclusion
Overall, the dynamic bicycle model surpassed the kinematic bicycle model in
reference tracking and control output. However, the controller could be further
extended by optimising the weights for the other state variables to give an
even better performance. Alternatively, the MPC controller could be tuned to
increase the bandwidth beyond 0.35 Hz, as relatively high frequencies could be
experienced during evasive manoeuvres.

9

7. Appendix
7.1 Appendix 1: Default (Kinematic) MPC Path Follower

Figure 8: Default MPC Reference Signal (L) & Default MPC Steering Angle (R) for Y-weight = 1e-3

Figure 9: Default MPC Reference Signal (L) & Default MPC Steering Angle (R) for Y-weight = 0.3

10

7.2 Appendix 2: Absolute Weightings

Figure 10: Error optimisation with absolute weightings

11

7.3 Appendix 3: Designed (Kinematic) MPC Path Follower

Figure 11: Designed MPC Reference Signal (L) & Default MPC Steering Angle (R) for Y-weight =
0.01

Figure 12: Designed MPC Reference Signal (L) & Default MPC Steering Angle (R) for Y-weight = 5

12

References

13

	Introduction
	Default MPC Path Follower
	Designed MPC Path Follower
	Controller Comparison
	Reflection
	Conclusion
	Appendix
	References

